Preprint : Considering Copositivity Locally ∗

نویسندگان

  • Peter J.C. Dickinson
  • Roland Hildebrand
چکیده

We say that a symmetric matrix A is copositive if vTAv ≥ 0 for all nonnegative vectors v. The main result of this paper is a characterization of the cone of feasible directions at a copositive matrix A, i.e., the convex cone of symmetric matrices B such that there exists δ > 0 satisfying A + δB being copositive. This cone is described by a set of linear inequalities on the elements of B constructed from the so called set of (minimal) zeros of A. This characterization is used to furnish descriptions of the minimal (exposed) face of the copositive cone containing A in a similar manner. In particular, we can check whether A lies on an extreme ray of the copositive cone by examining the solution set of a system of linear equations. In addition, we deduce a simple necessary and sufficient condition for the irreducibility of A with respect to a copositive matrix C.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Copositivity tests based on the linear complementarity problem

Copositivity tests are presented based on new necessary and sufficient conditions requiring the solution of linear complementarity problems (LCP). Methodologies involving Lemke’s method, an enumerative algorithm and a linear mixed-integer programming formulation are proposed to solve the required LCPs. A new necessary condition for (strict) copositivity based on solving a Linear Program (LP) is...

متن کامل

Copositivity for second-order optimality conditions in general smooth optimization problems

Second-order local optimality conditions involving copositivity of the Hessian of the Lagrangian on the reduced (polyhedral) tangent cone have the advantage that there is only a small gap between sufficient (the Hessian is strictly copositive) and necessary (the Hessian is copositive) conditions. In this respect, this is a proper generalization of convexity of the Lagrangian. We also specify a ...

متن کامل

Necessary and Sufficient Conditions for Copositive Tensors

In this paper, it is proved that a symmetric tensor is (strictly) copositive if and only if each of its principal subtensors has no (non-positive) negative H++-eigenvalue. Necessary and sufficient conditions for (strict) copositivity of a symmetric tensor are also given in terms of Z++-eigenvalues of the principal sub-tensors of that tensor. This presents a method for testing (strict) copositiv...

متن کامل

Tractable Subcones and LP-based Algorithms for Testing Copositivity

The authors in a previous paper devised certain subcones of the copositive cone and showed that one can detect whether a given matrix belongs to each of them by solving linear optimization problems (LPs) with O(n) variables and O(n) constraints. They also devised LP-based algorithms for testing copositivity using the subcones. In this paper, they investigate the properties of the subcones in mo...

متن کامل

An LP-based Algorithm to Test Copositivity

A symmetric matrix is called copositive if it generates a quadratic form taking no negative values over the nonnegative orthant, and the linear optimization problem over the set of copositive matrices is called the copositive programming problem. Recently, many studies have been done on the copositive programming problem (see, for example, [14, 5]). Among others, several branch and bound type a...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2016